Time-resolved EPR spectra of spin-correlated radical pairs: spectral and kinetic modulation resulting from electron-nuclear hyperfine interactions.
نویسندگان
چکیده
This paper expands the established four-state model of spin-correlated radical pairs (SCRPs) to include local nuclear spins which are ubiquitous in real-world systems and essential for the radical pair intersystem crossing (RP-ISC) mechanism. These nuclei are coupled to the unpaired electron spins by hyperfine interaction and split their electron paramagnetic resonance (EPR) lines. Rather than enumerating all possible nuclear states, an algorithm is devised to sort out the net hyperfine offset 2Q, which, along with the electron spin-spin coupling 2J, characterizes the behavior of SCRPs. Using this algorithm, the EPR spectra of SCRPs coupled to arbitrary nuclear spins can be efficiently simulated with only 2J and the EPR spectra of individual radicals as the inputs. Particularly illustrative is the case of a SCRP resulting from photoinduced electron transfer comprised of a spectrally narrow anion radical signal having small hyperfine splittings and a broad cation radical signal having many large hyperfine splittings and a Gaussian width sigma, where the EPR peak of the anion radical exhibits an effective splitting of 2(1/2)J(2)/sigma. For SCRPs having singlet and triplet pathways for charge recombination, their kinetic behavior is obtained concisely by considering the decay rate constants k(S) and k(T) as imaginary energies, while adhering to the existing derivation of the four-state model. These models are employed to interpret the diverse array of spectral and kinetic modulation patterns observed in the experimental EPR spectra of photogenerated SCRPs and to extract the 2J value, which reflects the donor-acceptor electronic coupling. During the first several hundred nanoseconds following photoexcitation, the spectral and time domain characteristics of the measured time-resolved EPR spectra manifest the consequences of the Uncertainty Principle, and the modulation patterns in either domain result from hyperfine splittings between the unpaired electron and the nuclear spins.
منابع مشابه
Demystifying EPR: A Rookie Guide to the Application of Electron Paramagnetic Resonance Spectroscopy on Biomolecules
Electron Paramagnetic Resonance (EPR) spectroscopy, also known as Electron Spin Resonance(ESR) especially among physicists, is a strong and versatile spectroscopic method forinvestigation of paramagnetic systems, i.e. systems like free radicals and most transition metalions, which have unpaired electrons. The sensitivity and selectivity of EPR are notable andintriguing as compared to other spec...
متن کاملAminoxyl Radicals of B/P Frustrated Lewis Pairs: Refinement of the Spin-Hamiltonian Parameters by Field- and Temperature-Dependent Pulsed EPR Spectroscopy
Q-band and X-band pulsed electron paramagnetic resonance spectroscopic methods (EPR) in the solid state were employed to refine the parameters characterizing the anisotropic interactions present in six nitroxide radicals prepared by N,N addition of NO to various borane-phosphane frustrated Lewis pairs (FLPs). The EPR spectra are characterized by the g-anisotropy as well as by nuclear hyperfine ...
متن کاملSpin-dynamics of the spin-correlated radical pair in photosystem I. Pulsed time-resolved EPR at high magnetic field.
Spin-dynamics of the spin-correlated radical pair (SCRP) P(700)(+)A(1A)(-) in the photosystem I (PSI) reaction center protein have been investigated with high-frequency (HF), time-resolved EPR spectroscopy. The superior spectral resolution of HF EPR enables spin-dynamics for both the donor and acceptor radicals in the pair to be monitored independently. Decay constants of each spin were measure...
متن کاملPhotochemical processes in photosynthesis studied by advanced electron paramagnetic resonance techniques *
Various continuous-wave and pulse electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) experiments performed on the radical species occurring in photosynthetic reaction centers of plants and bacteria during light-induced charge separation are reviewed here. Emphasis is placed on time-resolved experiments performed on short-lived intermediate states such as radical...
متن کاملTime-resolved EPR investigation of [70]fulleropyrrolidine nitroxide isomers.
A novel [70]fulleropyrrolidine functionalized with a nitroxide radical has been synthesized. After pulsed photoexcitation, time-resolved electron paramagnetic resonance (EPR) spectra have been recorded in liquid solution at standard X-band (9.5 GHz) and W-band (95 GHz) microwave frequencies. The spectra exhibit strongly electron spin polarized ground and excited states, the latter being arising...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. A
دوره 114 1 شماره
صفحات -
تاریخ انتشار 2010